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participants with measurements below the triclosan concentration represented by the x-value. 

Concentrations below the limit of detection were treated as left censored when constructing the 

curves, which were not adjusted for covariates (age, race/ethnicity, time period, BMI, and PIR). 
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Statistical Model 

 Let C denote concentration. We assume C is lognormally distributed, which is equivalent 

to the natural logarithm of C being normally distributed. Assigning parameters, if ln(C) is 

normally distributed with mean µ and standard deviation σ, then C is lognormally distributed 

with scale and shape parameters θ = exp(µ) and σ, respectively. The median of C is θ, its mean is 

θ × exp(σ2/2), its variance is θ2 × exp(σ2) × [exp(σ2) – 1], and its probability density function is: 

 𝑓 𝑐 = !
!" !!

𝑒𝑥𝑝 − !" ! !!"(!) !

!!!
 . [1] 

 We use regression modeling to adjust for confounders. Let Z be a vector of covariates, 

such as ANA status and the independent variables listed in Table S1. We make the conventional 

assumption that σ is constant and µ is a linear function of the covariates, µ = βz, in which case 

the median of C is θ(z) = exp(βz), where β  is a vector of regression coefficients and z is a vector 

of observed covariate values. As the lognormal distribution belongs to the family of accelerated 

failure time models, each covariate has a multiplicative effect on concentration. That is, if C0 is 

the baseline concentration (at Z = 0) and C is some general concentration (at Z = z), then C has 

the same distribution as θ(z) × C0. 

As an illustration, suppose Z is a single binary (0,1) covariate. If β = ln(2), for example, 

then θ(0) = exp(β × 0) = 1 and θ(1) = exp(β × 1) = 2. Thus, under the assumed lognormal 

distribution, the median (and mean) concentration for those with Z = 1 is twice as large as for 

those with Z = 0. Similarly, a 1-unit increase in a quantitative covariate with β = ln(2) also 

corresponds to a doubling in median (and mean) concentration. The same interpretation holds 

when Z is a vector of covariates if we focus on the effect of a single component of Z for fixed 
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values of the other covariates. 

We use the LIFEREG procedure in SAS (version 9.3, SAS Institute) to obtain maximum 

likelihood estimates (MLEs) of σ and β  for each chemical. 

Accounting for censoring 

For a given chemical, a detectable concentration produces an uncensored observation, 

{C = c}, which contributes f(c) to the likelihood. Otherwise, a nondetectable concentration, 

known only to be below the LOD, produces a left-censored observation, {C < LOD}, which 

contributes F(LOD) to the likelihood, where 

 𝐹 𝐿𝑂𝐷 = 𝑓 𝑐 𝑑𝑐!"#
!  . [2] 

The full likelihood is proportional to a product of terms of the form f(c) and F(LOD) over all 

persons, and the MLEs of σ and β  are the values that maximize the full likelihood. 

 Now suppose we want to analyze a mixture of dioxin-like chemicals, each of which has a 

TEF that relates its potency to that of the reference chemical (2,3,7,8-TCDD). We consider the 

dioxin-like chemicals listed in Table 1, with TEFs that decrease from 1.0 (most potent) to 

0.00003 (least potent). The TEF is used as an adjustment factor to transform the concentration of 

a dioxin-like chemical to the same potency scale as the reference chemical. For example, 

PCB126 is considered one-tenth as potent as 2,3,7,8-TCDD, and their TEFs are 0.1 and 1.0, 

respectively; thus, we treat concentration C of PCB126 as toxicologically equivalent to 

concentration 0.1 × C of 2,3,7,8-TCDD, by multiplying its measured concentration by 0.1 prior 

to combining with other chemicals in the mixture. 

Once the concentrations of dioxin-like chemicals have been expressed in equal potency 
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units, they can be summed to create a TEQ concentration for the mixture. Consider a person 

exposed to a mixture of M chemicals. For the i-th chemical (i=1,…,M), let Ci denote its 

concentration, LODi its limit of detection, and TEFi its toxic equivalency factor. If each 

concentration can be measured, that person’s TEQ for the mixture is the sum of M products of 

the form TEFi × Ci. However, if at least one concentration is below its LOD, we must account for 

censoring. Define an interval [Li, Ri] that contains the i-th chemical’s concentration, where Li is 

the left endpoint and Ri is the right endpoint. If Ci is uncensored and equals ci, then Li = Ri = ci, 

whereas if Ci is only known to be below LODi, then Li = 0 and Ri = LODi (i=1,…,M). Each 

person’s TEQ is viewed as interval censored, where the left and right endpoints of the censoring 

interval are L and R, which equal the sums of TEFi × Li and TEFi × Ri, respectively, over the M 

chemicals. Intuitively, the smallest the sum could be is L and the largest the sum could be is R. 

For example, consider a binary mixture (M = 2). If the first chemical is detectable with 

measured concentration c1 (uncensored) and the second chemical is undetectable with limit of 

detection LOD2 (left censored), then the TEQ for the binary mixture is known to be between a 

lower bound TEF1*c1 + TEF2*0 and an upper bound TEF1*c1 + TEF2*LOD2 (interval censored). 

That is, the TEQ is known to fall in the interval [TEF1*c1, TEF1*c1 + TEF2*LOD2]. 

As with the individual chemicals, we use the LIFEREG procedure in SAS to fit a 

lognormal model to interval-censored TEQ data for the mixture being investigated. For each 

person, we observe {L ≤ TEQ ≤ R}. The corresponding likelihood contribution is F(R) – F(L), 

except in the rare situation of no censoring, in which case L = R and the contribution is f(L), or 

equivalently f(R). The full likelihood is proportional to a product of such terms over all persons 

and, as before, the MLEs of σ and β  are the values that maximize the full likelihood. 
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Note that because the sum of lognormal variables is not itself lognormally distributed, the 

concentrations of individual chemicals and their mixtures cannot both be truly lognormally 

distributed. In practice, however, statistical models are simply approximations to reality. Hence, 

while the lognormal assumption (or virtually any parametric assumption) cannot be strictly true 

for both a TEQ concentration and its component concentrations, we apply the same analysis in 

both cases to be consistent and as a reasonable method of adjusting for confounders and heavy 

censoring when assessing the association between a mixture concentration and ANA positivity. 

For a given mixture, rather than a concentration being left censored by the LOD, suppose 

a person had no information for a component chemical. In this case, the TEQ censoring interval 

for the mixture cannot be calculated and one might elect to simply exclude that person from the 

analysis. To accommodate missing data more efficiently, we instead treat measurement Ci as 

censored in the interval [0, MAXi] for anyone with no information on the i-th chemical, where 

MAXi is the largest observed concentration for the i-th chemical (i=1,…,M) across all persons. 

Accounting for sampling 

 In order to account for the complex NHANES sampling design, we use jackknife 

methods to obtain appropriate variance estimates for the MLEs (SAS 2011), whether the 

outcome is an individual chemical concentration or a mixture TEQ concentration. The jackknife 

approach creates K replicate data sets, where K equals the number of primary sampling units 

(PSUs). Each replicate data set excludes a different PSU; an MLE is calculated from the 

remaining data; and the variance of the full-data MLE is estimated by a weighted sum of squared 

deviations between the replicate-specific MLEs and the full-data MLE. 

The 1999-2004 NHANES data involves K = 87 clusters (PSUs) and 43 strata. One 
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stratum contains three clusters and each of the other 42 strata contains two clusters. Without loss 

of generality, suppose the first stratum is the one with three clusters and let the j-th replicate data 

set be the one that excludes the j-th cluster (j=1,…,K). Define a set of jackknife coefficients {hj}, 

where h1 = h2 = h3 = 2/3 and hj = ½ for j=4,…,87. For the j-th replicate data set, all observations 

receive a replicate weight of 1.0, except for those in the stratum with the excluded PSU, where 

observations in the j-th cluster receive a replicate weight of 1/hj (i.e., either 3/2 or 2). Let γ 

denote the parameter of interest, which in our lognormal analysis could be either σ or an element 

of the vector β . The jackknife estimate of variance for 𝛾, the full-data MLE of γ, is: 

 𝑉 𝛾 = ℎ! 𝛾! − 𝛾
!!

!!!  , [3] 

where 𝛾! is the MLE of γ from the j-th replicate data set based on using the replicate weights. We 

calculate the left and right endpoints of a 95% confidence interval (CI) for γ using the formula: 

 𝛾 ± 1.96× 𝑉 𝛾  , [4] 

where 1.96 is the 97.5-th percentile of the standard normal distribution. The endpoints of a CI for 

a component of β , say β1, can be exponentiated to produce a CI for exp(β1), which is the mean 

concentration ratio (MCR) when β1 is the regression coefficient for ANA. 
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Table S1. Descriptive summaries and ANA associations in selected subgroups of 4,340 

participants studied in the 1999-2004 National Health and Nutrition Examination Surveys 

(NHANES). 

Factor 
Number (%) 
in Category 

Percent ANA 
Positive 

Odds Ratio for 
ANA Positivity a 

    
Sex/Parity    
 Male 2,199  (51%) 11 Reference 
 Nulliparous Female    733  (17%) 14 1.3  (1.0, 1.7) 
 Parous Female 1,257  (29%) 20 1.9  (1.5, 2.3) 
 Missing (female, parity unknown)    151  (  3%) 24 ----- 
     
Race/Ethnicity    
 Non-Hispanic White 2,018  (47%) 14 Reference 
 Non-Hispanic Black    954  (22%) 16 1.3  (1.0, 1.6) 
 Hispanic 1,368  (32%) 14 1.1  (0.8, 1.3) 
     
Time Period (NHANES Cycle)    
 1999–2000 1,565  (36%) 12 Reference 
 2001–2002 1,092  (25%) 18 1.7  (1.3, 2.2) 
 2003–2004 1,683  (39%) 14 1.2  (1.0, 1.5) 
     
Age (years)    
 12–19 1,107  (26%) 12 1.0  (0.7, 1.3) 
 20–54 1,899  (44%) 14 Reference 
 55+ 1,334  (31%) 16 1.1  (0.9, 1.4) 
 Mean ± SD b      41.6 ± 22.3 ----- ----- 
     
Poverty Index Ratio (PIR)    
 Below Poverty           (< 1)    888  (20%) 13 0.9  (0.7, 1.2) 
 At or Above Poverty  (≥ 1) 3,080  (71%) 14 Reference 
 Missing    372  (  9%) 17 ----- 
 Mean ± SD b       2.4 ± 1.6 ----- ----- 
     
Body Mass Index (BMI, kg/m2) c    
 Underweight      70  (  2%) 19 1.2  (0.6, 2.3) 
 Normal 1,590  (37%) 16 Reference 
 Overweight 1,319  (30%) 13 0.7  (0.6, 0.9) 
 Obese 1,248  (29%) 14 0.7  (0.6, 0.9) 
 Missing    113  (  3%) 17 ----- 
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Abbreviations: ANA, antinuclear antibodies; CDC, Centers for Disease Control and Prevention. 
a Point estimates and 95% confidence intervals under a logistic regression model that adjusts for 

the other factors in the table and includes only the 3,754 participants with no missing values. 
b Unadjusted mean and standard deviation of quantitative factors, after excluding missing values. 
c BMI was classified respectively as underweight, normal, overweight, or obese using standard 

cut points of <18.5, 18.5 to <25, 25 to <30, or ≥30 in adults (age 20+) and using 2000 CDC 
growth chart percentiles of <5, 5 to <85, 85 to <95, or ≥95 (adjusted for sex, age, weight, 
height, and head circumference) in adolescents (age <20) (Kuczmarski et al. 2002). 
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Figure S1. Distribution of triclosan concentration by sex, parity, and ANA status, National 

Health and Nutrition Examination Survey, 1999-2004. Nonparametric Kaplan-Meier curves 

(Kaplan and Meier 1958) for ANA-positive (solid line) and ANA-negative (dotted line) 

participants are plotted separately for (A) males, (B) females, (C) nulliparous females, and (D) 

parous females. For each (x,y) point along a curve, the y-value is the estimated proportion of 

participants with measurements below the triclosan concentration represented by the x-value. 
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(C) Nulliparous Females
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(D) Parous Females
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Concentrations below the limit of detection were treated as left censored when constructing the 

curves, which were not adjusted for covariates (age, race/ethnicity, time period, BMI, and PIR). 


